ЛЕНТА / СПРАВОЧНИКИ
EUDR не может быть отложен
16:30 — Мировые рынки
Плодородие земель положат на карту
13:30 — Развитие отрасли
11:00, 17.09.2024 — События
автор: РИА Новости

Новый способ раннего и точного распознавания опасных болезней подсолнечника нашли ученые СКФУ


Новый способ раннего и точного распознавания опасных болезней подсолнечника нашли ученые СКФУ. Они разработали систему на основе ансамбля нейронных сетей, которая с помощью искусственного интеллекта позволяет мониторить поля и выявлять мучнистую росу и серую гниль – самые распространенные заболевания подсолнечника. Впоследствии, как утверждают эксперты, данная система может быть использована и для других сельскохозяйственных культур. Результаты исследования опубликованы в сборнике "Proceedings of the NIELIT's International Conference on Communication, Electronics and Digital Technology".

Подсолнечник – основная масличная культура в России, из которой получают подсолнечное масло. Растение обладает высокой адаптивностью и богатым химическим составом, включающим белки, аминокислоты, витамины группы B и микроэлементы. Продукты переработки подсолнечника широко используются не только в пищевой, но и в косметической, фармакологической и химической промышленности. Стремление увеличить производство подсолнечника сталкивается с возрастающей угрозой заболеваний, способных нанести значительный ущерб урожаю. Фитосанитарные методы требуют постоянного контроля за состоянием растений. Однако такой подход весьма трудоемок и требует привлечения дополнительных ресурсов.

Ученые Северо-Кавказского федерального университета (СКФУ) предложили решить данную проблему с помощью искусственного интеллекта: они нашли метод повышения точности нейросетевого распознавания болезней подсолнечника на основе реальных полевых снимков. По словам ученых, система позволяет с точностью 97.02% определять по изображениям здоровые листья, мучнистую росу и серую гниль.

Мучнистая роса (возбудитель болезни – гриб Plasmopara Halstedii) и серая гниль (гриб Botrytis cinerea Pers) – одни из самых распространенных заболеваний подсолнечника (встречаются во всех регионах выращивания подсолнечника во все фазы его развития – ред.). Наряду с подсолнечником они поражают более 370 видов растений.

Как отметила младший научный сотрудник отдела модулярных вычислений и искусственного интеллекта СКФУ Валентина Бабошина, ранняя диагностика данных заболеваний позволит предотвратить значительные потери урожая, ведь эти болезни могут привести к почти 100% потере урожая, если вовремя не предупредить их распространение.

«Разработанный ансамбль нейронных сетей в сочетании с БПЛА позволит производителям отслеживать состояние полей в реальном времени и получать своевременные отчеты об очагах болезней, их виде и месте расположения", – добавила она.

По словам Бабошиной, в ходе исследования была использована программа Jupyter Notebook на ядре Conda, библиотека PyTorch языка программирования Python. На данный момент перед учеными стоит задача улучшения разработки путем добавления методов сегментации изображений, что позволит нейронной сети концентрироваться на отдельных областях листьев, пораженных болезнями, и повысит точность диагностики.

По словам ученого, разработанная система может быть расширена с помощью изображений других растений.

«Это делает ее универсальной и применимой на разных типах полей, даже комбинированных", – добавила она.

Исследование выполнено в рамках гранта Российского Научного Фонда № 23-71-10013 "Перспективные методы интеллектуальной обработки сигналов на основе глубоких нейронных сетей и модулярных вычислений".

Обсуждение

Для того, чтобы оставить комментарий вам нужно зарегистрироваться или авторизоваться.
Последние публикации в разделе
EUDR не может быть отложен
16:30 — Мировые рынки
Плодородие земель положат на карту
13:30 — Развитие отрасли
Популярное за неделю

Подпишись в соц.сетях!
на 2024-10-05
Регион Закуп. Изм. Прод. Изм.
ЦФО
41000.00 + 1050 41500.00 + 500
ПФО
38000.00 + 1600 39000.00 + 2000
СКФО
44000.00 + 2000 44500.00 + 1500
ЮФО
43300.00 + 2100 43500.00 + 1500
СФО
41000.00 + 1000 42000.00 + 1000
на 2024-10-05
Регион Закуп. Изм. Прод. Изм.
ЦФО
85000.00 + 2300 92000.00 + 8300
ЮФО
88000.00 + 4900 89000.00 + 3500
ПФО
87000.00 + 3400 89000.00 + 5300
СФО
87000.00 + 3500 88000.00 + 3000

Сводная таблица по зарубежным индексам

Сравнение котировок

Мировые балансы


Выберите регион
все страны и регионы